
Discrete Differential Geometry

Hunter College - Summer 2010
Mimi Tsuruga, Freie Universität

Lecture 5: July 1, 2010

8 Willmore Energy
Definition 8.1. The discrete Willmore energy at a vertex v is the sum

W (v) =
∑
e∈V

β(e)− 2π

over all edges incident to v. The discrete Willmore energy of a compact simplicial surface S without
boundary is the sum

W (S) =
1

2

∑
v∈V

W (v) =
∑
e∈E

β(e)− π|V |

over all vertices V . This is Möbius invariant because they are circles and angles are preserved. In the
planar case and if v and all its neighbors lie in S2 (tangent plane to S2 at v looks like planar case),∑
β(e) = 2π.

Definition 8.2. S(v) is the star of all faces incident to v.

S(v) = {f ∈ F | v incident to f}.

S(v) is convex if S(v) lies to one side of the plane of any of its faces.

Lemma 8.3. Let P be a closed (not necessarily planar) polygon in IR3. Let βi be its external angles.
Take a point P and connect it to all vertices of polygon P . Let αi be the angles at P of corresponding
triangles. Then ∑

i

βi ≥
∑
i

αi

and the equality holds iff P is planar and convex points P lies in its interior.

Proof.

αi + γi + δi = π

δi−1 + γi + βi ≥ π
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Now, sum over all i to get∑
i

π ≤
∑
i

(δi−1 + γi + βi) =
∑
i

(δi + γi + βi) =
∑
i

(π − αi) + βi =
∑
i

π −
∑
i

αi +
∑
i

βi

Thus ∑
i

π ≤
∑
i

π −
∑
i

αi +
∑
i

βi

0 ≤ −
∑
i

αi +
∑
i

βi∑
i

αi ≤
∑
i

βi

and
∑
αi =

∑
βi iff δi−1 + γi + βi = π for all i, ie P is planar.

Corollary 8.4. ∑
i

βi ≥ 2π

Proof. If P is planar, then
∑

i αi = 2π =
∑

i βi. If P is not planar, choose P in the complex hull of the
polygon. Then 2π <

∑
αi <

∑
βi.

Proposition 8.5. The discrete Willmore energy is non-negative, W (v) ≥ 0 and vanishes iff all vertices
of S(v) lie on a sphere and S(v) is convex.

Theorem 8.6. Let S be a compact simplicial surface without boundary. Then W (S) ≥ 0 and equality
hold iff S is a convex polyhedron inscribed in a sphere.

Proposition 8.7. The external angle β between the circumcircles of the triangles is given by any of
the equivalent formulas.

cos β = −Re q
|q|

= −Re (abcd)

|a||b||c||d|

=
〈a, c〉〈b, d〉 − 〈a, b〉〈c, d〉 − 〈a, d〉〈b, c〉

|a||b||c||d|

where q := q(x1, x2, x3, x4) ∈ H, xi ∈ Im H, a = x1 − x2, b = x2 − x3, c = x3 − x4, d = x4 − x1.

Proof. 4 points always lie on at least one sphere. Use a Möbius transformation to identify this sphere
with a plane ' C. Then a, b, c, d ∈ C. Thus a

d
, c
b
∈ C. Then arg a

d
= π − α, arg c

b
= π − γ.

q = q(x1, x2, x3, x4) =
(x1 − x2)(x3 − x4)

(x2 − x3)(x4 − x1)
=
a

b

c

d
= r1e

i(π−α)r2e
i(π−γ)

= r1r2e
i(2π−α−γ) = rei2πei(−α−γ) = rei(−α−γ)

Then arg q = −α− γ = β − π.

Re(q)

|q|
=
r cos(β − π)

r
= cos(β − π) = cos(π − β) = − cos β

for the first equality. For the second equality recall these identities about complex numbers:
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• |z1z2| = |z1||z2|

• |z̄| = |z|

• z−1 = 1
z

= z̄
zz̄

= z̄
|z|2

• |z−1| =
∣∣∣ z̄
|z|2

∣∣∣ = |z̄
|z|2 = |z|

|z|2 = 1
|z| = |z|−1

• Re(z−1) = Re(z)
|z|2

• Re(z1z2) = Re(z1)Re(z2)

Back to our problem, we get

Re(q)

|q|
=
Re(ab−1cd−1)

|ab−1cd−1|
=

Re(abcd)

|b|2|d|2|ab−1cd−1|

=
Re(abcd)

|b|2|d|2|a||b−1||c||d−1|
=

Re(abcd)

|b|2|d|2|a||b|−1|c||d|−1
=
Re(abcd)

|a||b||c||d|

For the third equality recall that for x, y ∈ ImH, xy = −〈x, y〉 + x × y where −〈x, y〉 = Re(xy) and
x× y = Im(xy).

Re(abcd) = Re((−〈a, b〉+ a× b)(−〈c, d〉+ c× d)) = 〈a, b〉〈c, d〉+Re((a× b)(c× d))

Also 〈A,B × C〉 = 〈B,C × A〉 and A× (B × C) = B〈A,C〉 − C〈A,B〉

= 〈a, b〉〈c, d〉 − 〈c, d× (a× b)〉 = 〈a, b〉〈c, d〉 −
〈
c, a〈d, b〉 − b〈d, a〉

〉
= 〈a, b〉〈c, d〉 − 〈a, c〉〈b, d〉+ 〈b, c〉〈a, d〉
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