Discrete Differential Geometry

Hunter College - Summer 2010
Mimi Tsuruga, Freie Universität

Lecture 5: July 1, 2010

8 Willmore Energy

Definition 8.1. The discrete Willmore energy at a vertex v is the sum

$$
W(v)=\sum_{e \in V} \beta(e)-2 \pi
$$

over all edges incident to v. The discrete Willmore energy of a compact simplicial surface S without boundary is the sum

$$
W(S)=\frac{1}{2} \sum_{v \in V} W(v)=\sum_{e \in E} \beta(e)-\pi|V|
$$

over all vertices V. This is Möbius invariant because they are circles and angles are preserved. In the planar case and if v and all its neighbors lie in S^{2} (tangent plane to S^{2} at v looks like planar case), $\sum \beta(e)=2 \pi$.

Definition 8.2. $S(v)$ is the star of all faces incident to v.

$$
S(v)=\{f \in F \mid v \text { incident to } f\} .
$$

$S(v)$ is convex if $S(v)$ lies to one side of the plane of any of its faces.
Lemma 8.3. Let \mathcal{P} be a closed (not necessarily planar) polygon in \mathbb{R}^{3}. Let β_{i} be its external angles. Take a point P and connect it to all vertices of polygon \mathcal{P}. Let α_{i} be the angles at P of corresponding triangles. Then

$$
\sum_{i} \beta_{i} \geq \sum_{i} \alpha_{i}
$$

and the equality holds iff \mathcal{P} is planar and convex points P lies in its interior.
Proof.

$$
\begin{aligned}
\alpha_{i}+\gamma_{i}+\delta_{i} & =\pi \\
\delta_{i-1}+\gamma_{i}+\beta_{i} & \geq \pi
\end{aligned}
$$

Now, sum over all i to get

$$
\sum_{i} \pi \leq \sum_{i}\left(\delta_{i-1}+\gamma_{i}+\beta_{i}\right)=\sum_{i}\left(\delta_{i}+\gamma_{i}+\beta_{i}\right)=\sum_{i}\left(\pi-\alpha_{i}\right)+\beta_{i}=\sum_{i} \pi-\sum_{i} \alpha_{i}+\sum_{i} \beta_{i}
$$

Thus

$$
\begin{aligned}
\sum_{i} \pi & \leq \sum_{i} \pi-\sum_{i} \alpha_{i}+\sum_{i} \beta_{i} \\
0 & \leq-\sum_{i} \alpha_{i}+\sum_{i} \beta_{i} \\
\sum_{i} \alpha_{i} & \leq \sum_{i} \beta_{i}
\end{aligned}
$$

and $\sum \alpha_{i}=\sum \beta_{i}$ iff $\delta_{i-1}+\gamma_{i}+\beta_{i}=\pi$ for all i, ie \mathcal{P} is planar.

Corollary 8.4.

$$
\sum_{i} \beta_{i} \geq 2 \pi
$$

Proof. If \mathcal{P} is planar, then $\sum_{i} \alpha_{i}=2 \pi=\sum_{i} \beta_{i}$. If \mathcal{P} is not planar, choose P in the complex hull of the polygon. Then $2 \pi<\sum \alpha_{i}<\sum \beta_{i}$.
Proposition 8.5. The discrete Willmore energy is non-negative, $W(v) \geq 0$ and vanishes iff all vertices of $S(v)$ lie on a sphere and $S(v)$ is convex.

Theorem 8.6. Let S be a compact simplicial surface without boundary. Then $W(S) \geq 0$ and equality hold iff S is a convex polyhedron inscribed in a sphere.

Proposition 8.7. The external angle β between the circumcircles of the triangles is given by any of the equivalent formulas.

$$
\begin{aligned}
\cos \beta & =-\frac{\operatorname{Re} q}{|q|}=-\frac{\operatorname{Re}(a b c d)}{|a||b||c||d|} \\
& =\frac{\langle a, c\rangle\langle b, d\rangle-\langle a, b\rangle\langle c, d\rangle-\langle a, d\rangle\langle b, c\rangle}{|a||b||c||d|}
\end{aligned}
$$

where $q:=q\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{H}, x_{i} \in \operatorname{Im} \mathbb{H}, a=x_{1}-x_{2}, b=x_{2}-x_{3}, c=x_{3}-x_{4}, d=x_{4}-x_{1}$.
Proof. 4 points always lie on at least one sphere. Use a Möbius transformation to identify this sphere with a plane $\simeq \mathbb{C}$. Then $a, b, c, d \in \mathbb{C}$. Thus $\frac{a}{d}, \frac{c}{b} \in \mathbb{C}$. Then $\arg \frac{a}{d}=\pi-\alpha, \arg \frac{c}{b}=\pi-\gamma$.

$$
\begin{aligned}
q & =q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)}{\left(x_{2}-x_{3}\right)\left(x_{4}-x_{1}\right)}=\frac{a}{b} \frac{c}{d}=r_{1} e^{i(\pi-\alpha)} r_{2} e^{i(\pi-\gamma)} \\
& =r_{1} r_{2} e^{i(2 \pi-\alpha-\gamma)}=r e^{i 2 \pi} e^{i(-\alpha-\gamma)}=r e^{i(-\alpha-\gamma)}
\end{aligned}
$$

Then $\arg q=-\alpha-\gamma=\beta-\pi$.

$$
\frac{\operatorname{Re}(q)}{|q|}=\frac{r \cos (\beta-\pi)}{r}=\cos (\beta-\pi)=\cos (\pi-\beta)=-\cos \beta
$$

for the first equality. For the second equality recall these identities about complex numbers:

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $|\bar{z}|=|z|$
- $z^{-1}=\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{|z|^{2}}$
$\bullet\left|z^{-1}\right|=\left|\frac{\bar{z}}{|z|^{2}}\right|=\frac{\mid \bar{z}}{|z|^{2}}=\frac{|z|}{|z|^{2}}=\frac{1}{|z|}=|z|^{-1}$
- $\operatorname{Re}\left(z^{-1}\right)=\frac{\operatorname{Re}(z)}{|z|^{2}}$
- $\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)$

Back to our problem, we get

$$
\begin{aligned}
\frac{\operatorname{Re}(q)}{|q|} & =\frac{\operatorname{Re}\left(a b^{-1} c d^{-1}\right)}{\left|a b^{-1} c d^{-1}\right|}=\frac{\operatorname{Re}(a b c d)}{|b|^{2}|d|^{2}\left|a b^{-1} c d^{-1}\right|} \\
& =\frac{\operatorname{Re}(a b c d)}{|b|^{2}|d|^{2}|a|\left|b^{-1}\right||c|\left|d^{-1}\right|}=\frac{\operatorname{Re}(a b c d)}{|b|^{2}|d|^{2}|a||b|^{-1}|c||d|^{-1}}=\frac{\operatorname{Re}(a b c d)}{|a||b||c||d|}
\end{aligned}
$$

For the third equality recall that for $x, y \in \operatorname{Im} \mathbb{H}, x y=-\langle x, y\rangle+x \times y$ where $-\langle x, y\rangle=\operatorname{Re}(x y)$ and $x \times y=\operatorname{Im}(x y)$.

$$
\operatorname{Re}(a b c d)=\operatorname{Re}((-\langle a, b\rangle+a \times b)(-\langle c, d\rangle+c \times d))=\langle a, b\rangle\langle c, d\rangle+\operatorname{Re}((a \times b)(c \times d))
$$

Also $\langle A, B \times C\rangle=\langle B, C \times A\rangle$ and $A \times(B \times C)=B\langle A, C\rangle-C\langle A, B\rangle$

$$
\begin{aligned}
& =\langle a, b\rangle\langle c, d\rangle-\langle c, d \times(a \times b)\rangle=\langle a, b\rangle\langle c, d\rangle-\langle c, a\langle d, b\rangle-b\langle d, a\rangle\rangle \\
& =\langle a, b\rangle\langle c, d\rangle-\langle a, c\rangle\langle b, d\rangle+\langle b, c\rangle\langle a, d\rangle
\end{aligned}
$$

