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7 Minimal Surfaces

7.1 Laplace Operator on Graphs
7.1.1 Smooth theory
Let Q C IR"™ be open. We define the Laplace operator as
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A function f: Q — IR is called harmonic ifft Af = 0.
In a Dirichlet boundary value problem, we want to find f such that Af =0 in 2 and f = g on 0f).
The Dirichlet Energy is defined as
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where dA is the area functional and Vf = grad f = (aa—afcl, ce 887];), giving us
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Let V={f: Q>R flon =g} and Vo = {f: Q@ — R | flon = 0}. Here f € C*(Q). feV,feV
iff f—-f=0¢€e.
Consider a variation f + t¢ € V;
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where 7 is a normal and da is the length of the measure of 0€2. Then
/AfgbdA:()ngeVO — Af=0
Q

That is, f is a solution to the Dirichlet boundary value problem iff it is a ciritical point of the Dirichlet
energy.

7.1.2 On Graphs
Definition 7.1. Let G be a finite graph with vertices V and edges E (no faces). Let f: V(G) — R
and v : E(G) — IR.
(AN = > ve)f@) = f)
e=[z,z;|EE

is called the Laplace operator on the graph GG with the weights v : E — IR on the edges. One can assume
v:FEF — R,

A function f:V — R is called harmonic it Af = 0.

The Dirichlet Energy on a graph is

e=[z,z;|EE
If v: F — IR, then the Dirichlet energy is positively defined.

Theorem 7.2. Let Vj; C V (analogue of 992). ¢: Vy — IR is given. Then f : V — IR is a critical point
of the Dirichlet energy on

fVo,C:{f:VHIR’f’Vo:dVO}
only if f|y\y, is harmonic.

Theorem 7.3. Let all weights be positive and the graph G connected. Then there exists a unique
minimizer of the Dirichlet energy on Fy; ., Vo # 0. This minimizer is the unique solution to the Dirichlet
boundaray value problem Af|y\v, =0, fly, = c.

7.2 Dirichlet Energy of Piecewise Linear Maps and the Discrete Laplace
Operator

Theorem 7.4. Let S be a simplicial surface and f be a piecewise linear (on faces of S) continuous
function. Then its Dirichlet energy is

E(f) =7 Y ve)(fw) — flay))?

where the weights are

() cot a;; + cot avj; e internal
vie) =
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Here «j, aj; are angles opposite e.



Definition 7.5. The operator
AN@) = > ve)fx) - flx)
e=[z,z;|€EE
with the weights from above is called the discrete cotangent Laplace operator.

Theorem 7.6. Let z; € IR" be a vertex of a simplicial surface in IR". Then the area gradient is equal
to the cotangent Laplace operator.

Corollary 7.7. Let S be a critical point for the area functional. Then the coordinate function is
harmonic.

7.3 Discrete Laplace Beltrami Operator

Lemma 7.8. The discs of two neighboring triangles are empty (ie, the edge e is Delaunay) iff cot o 4
cot 3 > 0.

Definition 7.9. Let (M,d) be a piecewise flat surface and 7 its Delaunay tesselation. The discrete
Laplace Beltrami operator of (M, d) is defined by

APE)=5 X (eotay+cota)(f(w) - f)
[x4,x;]€ e]dges of 7

where the sum is taken over al the edges of the Delaunay tesselation.
Properties

e Generically 7 is a triangulation. If 7 is not a triangulation, they are circular n-gons with n > 3.
e All weights are positive.

e Existence and uniqueness of harmonic functions (with appropriate boundary conditions).

7.4 Delaunay Triangulation and the Dirichlet Energy
Lemma 7.10. (Rippa’s Lemma)

(UQ — US)Z(’I“l + 7’3)(T2 + 7“4)

Eqg— B = _
= = 48in 0 rirersry (rirs = 1a4)
Proof.
U — Ug U — U
u = =
’ [Jur — uol| 1

uy — ug = (rycosf,rysinf) — (0,0) = rycosb u, + rosinf u,

Uy — Uop .
:r2c089( >+r2sm0uy

r

T2 .
= —cosf(u; — ug) + rosinf u,
1

wy = — ((u2 o) — 2 cosf(uy — u0)>

ro sin 0 r1




1

-V
51Vl
Z(Tﬂ“z

Z(Tﬂ”z

T2
(8]

1

4

1 [rysin®@
4 (&1

2A(N) = % <Z’;,Z§> (%7”17"2 sin@)
sin @) (u? + uz)
sinf) [(“1 - “0>2 # (g (0= w0 = 2 costtun - uo)))2]
T r9sin 6 T
2
sin 0(uy — up)? + . :ilne ((Ug —ug)? + (:—j cos O(uy — u0)>

2 cosO(uy — up)
1

—2(us — up) (7’

)

cos
(Ul - Uo)2 +

re cos? 6

ry sin @

T

— 2 . 2 _ . _
sin 6 (= o)™+ o sine(u2 ) 2sin0 (u1 — uo) (ug uo)]

= 4siln6 :_j(ul —ug)? + :_;(UQ — )% — 2cos O(uy — ug)(ug — uo)]
— 4811119 :—j(ul —ul)? + :—;(UQ —ud)? —2cos O(uy — ul)(ug — uS)]
= 4811110 :—j(ug — ud? — 2uy (ug — uf)) + :—:(ug —ul? — 2us(up — u))
—%%%%ﬂﬁ—mwrwm—wm—%ﬂ
- 4Siln9 [(% + :_: — 2cos 9) (ug - U82) - (%2u1 + :—:2102 — 2cosf(uy + u2)> (uo — u(’;)}
= m {(:—z + :—z — 2cos(m — 0)) (ug — U32)
_ (;—222@ + ;—22113 —2cos(m — 6)(uz + u3)) (ug — uS)]
B 4811116 (::_z + :_2 +2cos 9) (up — up”) — (:—227@ + :—zng + 2 cos f(uy + u3)) (ug — ug)
- 4511119 (;—z + :—i — 2cos 6) (u2 —ur?) — <::—;12u3 - :—i2u4 — 2cosB(ug + U4)> (up — ug)
= @ (:—i + % + 2 cos 6’) (u — ul?) — (:—12114 + :—12141 + 2 cosO(uy + ul)) (ug — ug)




(D) + E(A3) + E(A4)) = (E(A]) + E(A3) + E(A3) + E(AY)

E
Uy — U r r r r r r r r
(g 0>[_z+_1+_s+_z+_4+_3+_1+—4)<u0+u3>

4sin 0 TR Te To T3 T3 T4 T4 T
T2 (8] rs ) T4 r3 1 T4
—2 —Uq —+ — U2 + — U2 + —Uus + —Uus -+ — Uy + — U4 + — U1
1 ) T T3 rs T4 Ty ™

—cos O(uy + ug) + cos O(ug + ug) — cos O(uz + uy) + cos O(uy + uq))]

Uy — U r+r r+r ro 4T ro+r .
(éfsinQO)[(l BT 4>(“°+u°)

) Ty r1 1

((m +74) (:f—ll + Z—j) + (11 +73) (% + ﬁ—j))}
(w0 —up) { (11 +73)(re + 74) N (ry 4+ 13)(re + 7“4)) (o + 1)

(

|

a7y rmrs

(ra + 1) (r3u1 + 7’1U3) () (r4u2 + r2u4>)}

™rs 2Ty

1 1 .
(7'1 + 7”3)(7“2 + 7'4) (@ + r’f’g) (UQ + uo)

ry+r Ty 4T
-2 ((T2+T4) (UO ! 3>+(T1+7’3) (’U,S 2 4)):|
rirs TraTy

:M(rl+r3)(r2+r4) Kquru(’; +uo+u(’§> _2<ﬂ+ g )}

4sind ToTy T3

o %)\2
_ (uo — ug)? (r1 +73) (12 +74) (1175 — rara)

4sind r1T9T3Ts
where we have
Uy — Up Ug — U3
- = (UA1>$ = _<UA3)£L” = rs
r3uy — r3up = riup — rius
U r3Uq + rius
O T e
mrs
Uy — U Uy — Uy
r = (UA2>CE = _<UA4)x = s
2
u* . T4U2 + ToUy
0 TaTy

]

Lemma 7.11. (13) is a Delaunay edge of the quad (1234) iff ri7r3 < rory. (1234) is circular iff rirg = rory.
En — Eg- > 0 iff (24) is Delaunay.

Theorem 7.12. Let (.5, d) be a piecewise flat surface and let V' C S be a set of marked points (containing
all the cone points). Let f : V' — IR be a function on marked points. For each triangulation 7" with
vertex set V', let fr : S — IR be the piecewise linear interpolation of f that is linear on the faces of the
triangulation 7. Then the minimum of the Dirichlet energy over all possible triangulations is attained



on the Delaunay triangulation of (.5, d)
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where T is the Delaunay triangulation.

Theorem 7.13. A triangulation is Delaunay iff all its edges are Delaunay edges.

7.4.1 Harmonic Index of a triangulation

Definition 7.14.

is called the harmonic index of the triangle /.
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is called the harmonic index of a triangulation T

Definition 7.15. Let 7 be the set of all triangulations of a piecewise flat surface on a given set of marked
points and let f : 7 — IR. We say that f is proper if for any M € IR, the number of triangulations
T € 7 with f(T) < M is finite.

Proposition 7.16. The harmonic index is a proper function.

7.4.2 Application to minimal surfaces

Definition 7.17. A polyhedral surface is called minimal if:

e (narrow definition) its triangulation is Delaunay and Af = 0, where A is the Laplace Beltrami
operator (which, in this case, coincides with the Laplace operator of polyhedral surfaces in IR?).

e (wide definition) Af = 0, where A is the Laplace Beltrami operator

In both cases, the weights are positive, thus the maximum principle is satisfied (ie, every vertex lies
in the convex hull of its neighbors). In the first case, minimal surfaces are area minimizing.
Minimal surfaces f : U C IR? — IR? can be equivalently defined as:

e area Iminimizers
e H =0 (mean curvature vanishes) H = Af where A is Laplace Beltrami operator of surface.

In the discrete case, we have seen that discrete surface f is critical for the area functional iff Af =0
where A is the Laplace operator of the surface triangulation. Note: the weights of A are not necessarily
positive.



