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3 Flow
Definition 3.1. A flow on a discrete curve γ : I → IRn is a continuous deformation

Γ : I[⊂ Z]× J [⊂ IR]→ IRn

(k, t) 7→ Γ(k, t)

by a vectorfield v : I × J → IRn along the curve. γt(k) = Γ(k, t) and v(k, t) = ∂
∂t

Γ(k, t).

Definition 3.2. A flow is called tangent if it is parallel to γ1−γ1̄ and preserves the arclength parametriza-
tion.

Proposition 3.3. The tangent flow of an arclength parametrized discrete curve is unique up to a
multiplicative constant and is given by

Γt =
T + T1̄

1 + 〈T, T1̄〉

where 〈·, ·〉 is the scalar product in IRn.

Proof. Let Γ(·, t) = γt : I → IRn be an arclength parametrized curve. The tangent vector is given by

T t : I → IRn

k 7→ γt(k + 1)− γt(k)

since γ is arclength parametrized, ie, the denominator is 1.

Notation: γt(k) =: γ T t(k) = γ1 − γ =: T

γt(k + 1) =: γ1 T t(k + 1) = γ2 − γ1 =: T1

γt(k − 1) =: γ1̄ T t(k − 1) = γ − γ1̄ =: T1̄

Note that T + T1̄ = γ1 − γ1̄.
For discrete arclength parametrized curves, the tangent vectors are of the form

v = α(T, T1̄)(γ1 − γ1̄)

where α is some function of two arguments.
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We know that Γ is a tangent flow so by definition v(k, t) = ∂
∂t

Γ(k, t) = α(T, T1̄)(γ1 − γ1̄) =
α(T, T1̄)(T + T1̄), for all k ∈ I. Since |T | = 1 for all k ∈ I, |T |2 = 1 and d

dt
|T |2 = 0 or

∂

∂t
|T |2 =

∂

∂t
〈T, T 〉 = 〈 ∂

∂t
T, T 〉+ 〈T, ∂

∂t
T 〉 = 2〈T, Tt〉 = 0

where

Tt =
∂

∂t
(γ1 − γ) =

∂

∂t
(γtk+1 − γtk) =

∂

∂t
(Γ(k + 1, t)− Γ(k, t))

=
∂

∂t
Γ(k + 1, t)− d

dt
Γ(k, t)

= α(T1, T )(T1 + T )− α(T, T1̄)(T + T1̄)

Then

0 = 〈T, Tt〉
= 〈T, (α(T1, T )(T1 + T )− α(T, T1̄)(T + T1̄))〉
= α(T1, T )〈T, (T1 + T )〉 − α(T, T1̄)〈T, (T + T1̄)〉

= α(T1, T )

(
〈T, T1〉+ 〈T, T 〉

)
− α(T, T1̄)

(
〈T, T 〉+ 〈T, T1̄〉

)
= α(T1, T )

(
〈T, T1〉+ 1

)
− α(T, T1̄)

(
1 + 〈T, T1̄〉

)
Thus

α(T1, T )
(
〈T, T1〉+ 1

)
= α(T, T1̄)

(
1 + 〈T, T1̄〉

)
and

α(T, T1̄)
(
〈T1̄, T 〉+ 1

)
= α(T1̄, T2̄)

(
1 + 〈T1̄, T2̄〉

)
giving us

α(T1, T )
(
〈T, T1〉+ 1

)
= α(T1̄, T2̄)

(
1 + 〈T1̄, T2̄〉

)
= c

for some constant c because the left hand side and right hand side are independent of the the variables
they contain. So

c = α(T, T1̄)
(
1 + 〈T, T1̄〉

)
α(T, T1̄) =

c

1 + 〈T, T1̄〉

Finally,

v(k, t) =
∂

∂t
Γ(k, t) = α(T, T1̄)(T + T1̄) =

T + T1̄

1 + 〈T, T1̄〉
· c
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Lemma 3.4. Let γk−1, γk, γk+1 be 3 vertices of an arclength parametrized curve. Choose a vertex γ̃k of
its Darboux transform infinitesimally close to γk−1.

γ̃k = γk−1 + εw + o(ε), w ∈ C.

Then, the next vertex of the Darboux transform γ̃ is

γ̃k+1 = γk + εVk〈w, Tk−1〉+ o(ε),

where

Vk =
Tk + Tk−1

1 + 〈Tk, Tk−1〉
is the tangent flow of γk. In particular, if w = Tk−1,

γ̃k+1 = γk + εVk + o(ε).

Theorem 3.5. Darboux transformation of discrete arclength parametrized curves is compatible with
its tangent flow.

4 Curvature

4.1 Smooth

Definition 4.1. Let c : [a, b] → IR2 be a regular arclength parametrized curve. The curvature κ :
[a, b]→ IR is given by

κ(s) := |c̈(s)|

The curvature of circles give the right intutition of the curvature of general curves. Namely the
curvature of a general curve finds the “best approximating” circle. This circle is called the osculating
circle and the inverse of its radius is the curvature.

4.2 Discrete

Definition 4.2. The curvature of γ(t) is the inverse oriented radius of the osculating circle of γ(t).

K =
1

R
.

One could select from a few different definitions of an osculating circle.

• A vertex osculating circle at γk = γ is the circle through γ1̄, γ, γ1. For arclength parametrized
curves, K is bounded by 2.

• An edge osculating circle at T1̄ is the circle whose center is the intersection of the bisectors of γk
and γk−1 and tangent to Tk−1 = γk − γk−1. The curvature is then defined by

|γk − γk−1| = R(tan
φk−1

2
+ tan

φk
2

)

K =
tan φk−1

2
+ tan φk

2

|∆γk−1|
where φk is the exterior angle between Tk, Tk+1 at γk.
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• An edge osculating circle at γk for an arclength parametrized curve is the circle touching Tk−1, Tk
at their midpoints. The curvature is defined by

R tan
φk
2

=
1

2

K = 2 tan
φk
2

We will choose to use this last one.

5 Elastica

5.1 Smooth Elastica

Definition 5.1. Elastica are extremals (critical points) of the bending energy functional

E =

∫ L

0

K2(s) ds

where K(s) = |T ′(s)| is the curvature at γ(s).

Theorem 5.2. An arclength parametrized curve γ : [0, L] → IR3 is elastica iff its tangent vector
T : [0, L]→ S2 describes the evolution of the axis of a spherical pendulum.

5.2 Variational Calculus

The critical points of the functional

S =

∫ L

0

L(q, q′) ds

under variations preserving the constraints

Fi =

∫ L

0

fi(q, q
′) ds = ci ∈ R

are critical points of the functional

Sλ = S +
∑
i

λiFi,

where λi are Lagrange multipliers. In this case, the critical points of Sλ satisfy the constraints choosing
λi.

The tranjectory q(t) of a mechanical system with the potential energy U (depending on q) and the
kinetic energy V (depending on q′) is critical for the action functional

S =

∫ T

0

L(q, q′) dt =

∫ T

0

(V − U) dt
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x is a critical point of a function f(x) with respect to a constraint h(x) = 0 iff ∇f = −λ∇h.

∇f +
∑
i

λi∇hi = 0

∇fλ = 0 fλ := f +
∑
i

λihi

∂

∂xi
fλ =

∂

∂xi
f +

∑
i

λi
∂

∂xi
hi = 0 ∀i = 1, . . . , n

If M = {x | hj(x)∀j = 1, . . . , k} is compact, then critical points must exist.

5.3 Discrete Elastica

Definition 5.3. A discrete arclength parametrized curve γ : T → IR3 with tangent vector T : I → S2

is called discrete elastica if it is critical for the functional

S =
∑
i

log(1 +
K2
i

4
) =

∑
i

log(1 + 〈Ti, Ti+1〉) '
∑
i

log |Ti + Ti+1|

where Ki = 2 tan φi

2
. [' means the functionals are equivalent.] The permissible variations should

preserve the endpoints, γ0, γn ∈ IR3 and the endedges T0, Tn−1 ∈ S2.

Theorem 5.4. (Euler-Lagrange equations for discrete elastica) A discrete arclength parametrized curve
γ : I → IR3 is a discrete elastica iff there exist vectors a, b ∈ IR3 such that

Tk × Tk−1

1 + 〈Tk, Tk−1〉
= a× γk + b

where Tk = γk+1 − γk.

Definition 5.5. The flow ∂
∂t
γk = a × γk + b on discrete arclength parametrized curves is called the

Heisenberg flow.

Lemma 5.6. The Heisenberg flow is the only local flow in the binormal direction that commutes with
the tangent flow.

Theorem 5.7. A discrete arclength parametrized curve is a discrete elastica iff the Heisenberg flow
preserves its form, ie, under action of this flow, the curve is evolved by a Euclidean motion.

Definition 5.8. A discrete spherical pendulum is a map T : Z→ S2 with the Lagrangian

L =
∑
k

log(1 + 〈Tk, Tk−1〉)− 〈a, Tk〉

log(1 + 〈Tk, Tk−1〉) is the kinetic and 〈a, Tk〉 potential energy of the pendulum.

Theorem 5.9. A discrete arclength parametrized curve γ : I → IR3 is a discrete elastica iff its tangent
vector T : I → S2 describes the evolution of a discrete spherical pendulum.
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