Discrete Differential Geometry

Hunter College - Summer 2010
Mimi Tsuruga, Freie Universität

Lecture 2: June 10, 2010

3 Flow

Definition 3.1. A flow on a discrete curve $\gamma: I \rightarrow \mathbb{R}^{n}$ is a continuous deformation

$$
\begin{aligned}
\Gamma: I[\subset \mathbb{Z}] \times J[\subset \mathbb{R}] & \rightarrow \mathbb{R}^{n} \\
(k, t) & \mapsto \Gamma(k, t)
\end{aligned}
$$

by a vectorfield $v: I \times J \rightarrow \mathbb{R}^{n}$ along the curve. $\gamma^{t}(k)=\Gamma(k, t)$ and $v(k, t)=\frac{\partial}{\partial t} \Gamma(k, t)$.
Definition 3.2. A flow is called tangent if it is parallel to $\gamma_{1}-\gamma_{\overline{1}}$ and preserves the arclength parametrization.

Proposition 3.3. The tangent flow of an arclength parametrized discrete curve is unique up to a multiplicative constant and is given by

$$
\Gamma_{t}=\frac{T+T_{\overline{1}}}{1+\left\langle T, T_{\overline{1}}\right\rangle}
$$

where $\langle\cdot, \cdot\rangle$ is the scalar product in \mathbb{R}^{n}.
Proof. Let $\Gamma(\cdot, t)=\gamma^{t}: I \rightarrow \mathbb{R}^{n}$ be an arclength parametrized curve. The tangent vector is given by

$$
\begin{aligned}
& T^{t}: I \rightarrow \mathbb{R}^{n} \\
& k \mapsto \gamma^{t}(k+1)-\gamma^{t}(k)
\end{aligned}
$$

since γ is arclength parametrized, ie, the denominator is 1.

$$
\text { Notation: } \begin{aligned}
\gamma^{t}(k) & =: \gamma & T^{t}(k) & =\gamma_{1}-\gamma=: T \\
\gamma^{t}(k+1) & =: \gamma_{1} & T^{t}(k+1) & =\gamma_{2}-\gamma_{1}=: T_{1} \\
\gamma^{t}(k-1) & =: \gamma_{\overline{1}} & T^{t}(k-1) & =\gamma-\gamma_{\overline{1}}=: T_{\overline{1}}
\end{aligned}
$$

Note that $T+T_{\overline{1}}=\gamma_{1}-\gamma_{\overline{1}}$.
For discrete arclength parametrized curves, the tangent vectors are of the form

$$
v=\alpha\left(T, T_{\overline{1}}\right)\left(\gamma_{1}-\gamma_{\overline{1}}\right)
$$

where α is some function of two arguments.

We know that Γ is a tangent flow so by definition $v(k, t)=\frac{\partial}{\partial t} \Gamma(k, t)=\alpha\left(T, T_{\overline{1}}\right)\left(\gamma_{1}-\gamma_{\overline{1}}\right)=$ $\alpha\left(T, T_{\overline{1}}\right)\left(T+T_{\overline{1}}\right)$, for all $k \in I$. Since $|T|=1$ for all $k \in I,|T|^{2}=1$ and $\frac{d}{d t}|T|^{2}=0$ or

$$
\frac{\partial}{\partial t}|T|^{2}=\frac{\partial}{\partial t}\langle T, T\rangle=\left\langle\frac{\partial}{\partial t} T, T\right\rangle+\left\langle T, \frac{\partial}{\partial t} T\right\rangle=2\left\langle T, T_{t}\right\rangle=0
$$

where

$$
\begin{aligned}
T_{t} & =\frac{\partial}{\partial t}\left(\gamma_{1}-\gamma\right)=\frac{\partial}{\partial t}\left(\gamma_{k+1}^{t}-\gamma_{k}^{t}\right)=\frac{\partial}{\partial t}(\Gamma(k+1, t)-\Gamma(k, t)) \\
& =\frac{\partial}{\partial t} \Gamma(k+1, t)-\frac{d}{d t} \Gamma(k, t) \\
& =\alpha\left(T_{1}, T\right)\left(T_{1}+T\right)-\alpha\left(T, T_{\overline{1}}\right)\left(T+T_{\overline{1}}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
0 & =\left\langle T, T_{t}\right\rangle \\
& =\left\langle T,\left(\alpha\left(T_{1}, T\right)\left(T_{1}+T\right)-\alpha\left(T, T_{\overline{1}}\right)\left(T+T_{\overline{1}}\right)\right)\right\rangle \\
& =\alpha\left(T_{1}, T\right)\left\langle T,\left(T_{1}+T\right)\right\rangle-\alpha\left(T, T_{\overline{1}}\right)\left\langle T,\left(T+T_{\overline{1}}\right)\right\rangle \\
& =\alpha\left(T_{1}, T\right)\left(\left\langle T, T_{1}\right\rangle+\langle T, T\rangle\right)-\alpha\left(T, T_{\overline{1}}\right)\left(\langle T, T\rangle+\left\langle T, T_{\overline{1}}\right\rangle\right) \\
& =\alpha\left(T_{1}, T\right)\left(\left\langle T, T_{1}\right\rangle+1\right)-\alpha\left(T, T_{\overline{1}}\right)\left(1+\left\langle T, T_{\overline{1}}\right\rangle\right)
\end{aligned}
$$

Thus

$$
\alpha\left(T_{1}, T\right)\left(\left\langle T, T_{1}\right\rangle+1\right)=\alpha\left(T, T_{\overline{1}}\right)\left(1+\left\langle T, T_{\overline{1}}\right\rangle\right)
$$

and

$$
\alpha\left(T, T_{\overline{1}}\right)\left(\left\langle T_{\overline{1}}, T\right\rangle+1\right)=\alpha\left(T_{\overline{1}}, T_{\overline{2}}\right)\left(1+\left\langle T_{\overline{1}}, T_{\overline{2}}\right\rangle\right)
$$

giving us

$$
\alpha\left(T_{1}, T\right)\left(\left\langle T, T_{1}\right\rangle+1\right)=\alpha\left(T_{\overline{1}}, T_{\overline{2}}\right)\left(1+\left\langle T_{\overline{1}}, T_{\overline{2}}\right\rangle\right)=c
$$

for some constant c because the left hand side and right hand side are independent of the the variables they contain. So

$$
\begin{aligned}
c & =\alpha\left(T, T_{\overline{1}}\right)\left(1+\left\langle T, T_{\overline{1}}\right\rangle\right) \\
\alpha\left(T, T_{\overline{1}}\right) & =\frac{c}{1+\left\langle T, T_{\overline{1}}\right\rangle}
\end{aligned}
$$

Finally,

$$
v(k, t)=\frac{\partial}{\partial t} \Gamma(k, t)=\alpha\left(T, T_{\overline{1}}\right)\left(T+T_{\overline{1}}\right)=\frac{T+T_{\overline{1}}}{1+\left\langle T, T_{\overline{1}}\right\rangle} \cdot c
$$

Lemma 3.4. Let $\gamma_{k-1}, \gamma_{k}, \gamma_{k+1}$ be 3 vertices of an arclength parametrized curve. Choose a vertex $\tilde{\gamma}_{k}$ of its Darboux transform infinitesimally close to γ_{k-1}.

$$
\tilde{\gamma}_{k}=\gamma_{k-1}+\epsilon w+o(\epsilon), \quad w \in \mathbb{C} .
$$

Then, the next vertex of the Darboux transform $\tilde{\gamma}$ is

$$
\tilde{\gamma}_{k+1}=\gamma_{k}+\epsilon V_{k}\left\langle w, T_{k-1}\right\rangle+o(\epsilon),
$$

where

$$
V_{k}=\frac{T_{k}+T_{k-1}}{1+\left\langle T_{k}, T_{k-1}\right\rangle}
$$

is the tangent flow of γ_{k}. In particular, if $w=T_{k-1}$,

$$
\tilde{\gamma}_{k+1}=\gamma_{k}+\epsilon V_{k}+o(\epsilon)
$$

Theorem 3.5. Darboux transformation of discrete arclength parametrized curves is compatible with its tangent flow.

4 Curvature

4.1 Smooth

Definition 4.1. Let $c:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular arclength parametrized curve. The curvature κ : $[a, b] \rightarrow \mathbb{R}$ is given by

$$
\kappa(s):=|\ddot{c}(s)|
$$

The curvature of circles give the right intutition of the curvature of general curves. Namely the curvature of a general curve finds the "best approximating" circle. This circle is called the osculating circle and the inverse of its radius is the curvature.

4.2 Discrete

Definition 4.2. The curvature of $\gamma(t)$ is the inverse oriented radius of the osculating circle of $\gamma(t)$.

$$
K=\frac{1}{R}
$$

One could select from a few different definitions of an osculating circle.

- A vertex osculating circle at $\gamma_{k}=\gamma$ is the circle through $\gamma_{\overline{1}}, \gamma, \gamma_{1}$. For arclength parametrized curves, K is bounded by 2 .
- An edge osculating circle at $T_{\overline{1}}$ is the circle whose center is the intersection of the bisectors of γ_{k} and γ_{k-1} and tangent to $T_{k-1}=\gamma_{k}-\gamma_{k-1}$. The curvature is then defined by

$$
\begin{gathered}
\left|\gamma_{k}-\gamma_{k-1}\right|=R\left(\tan \frac{\phi_{k-1}}{2}+\tan \frac{\phi_{k}}{2}\right) \\
K=\frac{\tan \frac{\phi_{k-1}}{2}+\tan \frac{\phi_{k}}{2}}{\left|\Delta \gamma_{k-1}\right|}
\end{gathered}
$$

where ϕ_{k} is the exterior angle between T_{k}, T_{k+1} at γ_{k}.

- An edge osculating circle at γ_{k} for an arclength parametrized curve is the circle touching T_{k-1}, T_{k} at their midpoints. The curvature is defined by

$$
\begin{aligned}
& R \tan \frac{\phi_{k}}{2}=\frac{1}{2} \\
& K=2 \tan \frac{\phi_{k}}{2}
\end{aligned}
$$

We will choose to use this last one.

5 Elastica

5.1 Smooth Elastica

Definition 5.1. Elastica are extremals (critical points) of the bending energy functional

$$
E=\int_{0}^{L} K^{2}(s) d s
$$

where $K(s)=\left|T^{\prime}(s)\right|$ is the curvature at $\gamma(s)$.
Theorem 5.2. An arclength parametrized curve $\gamma:[0, L] \rightarrow \mathbb{R}^{3}$ is elastica iff its tangent vector $T:[0, L] \rightarrow S^{2}$ describes the evolution of the axis of a spherical pendulum.

5.2 Variational Calculus

The critical points of the functional

$$
S=\int_{0}^{L} \mathcal{L}\left(q, q^{\prime}\right) d s
$$

under variations preserving the constraints

$$
F_{i}=\int_{0}^{L} f_{i}\left(q, q^{\prime}\right) d s=c_{i} \in R
$$

are critical points of the functional

$$
S_{\lambda}=S+\sum_{i} \lambda_{i} F_{i}
$$

where λ_{i} are Lagrange multipliers. In this case, the critical points of S_{λ} satisfy the constraints choosing λ_{i}.

The tranjectory $q(t)$ of a mechanical system with the potential energy U (depending on q) and the kinetic energy V (depending on q^{\prime}) is critical for the action functional

$$
S=\int_{0}^{T} \mathcal{L}\left(q, q^{\prime}\right) d t=\int_{0}^{T}(V-U) d t
$$

x is a critical point of a function $f(x)$ with respect to a constraint $h(x)=0$ iff $\nabla f=-\lambda \nabla h$.

$$
\begin{aligned}
\nabla f+\sum_{i} \lambda_{i} \nabla h_{i} & =0 \\
\nabla f_{\lambda} & =0
\end{aligned} \quad f_{\lambda}:=f+\sum_{i} \lambda_{i} h_{i}, ~(\forall i=1, \ldots, n
$$

If $M=\left\{x \mid h_{j}(x) \forall j=1, \ldots, k\right\}$ is compact, then critical points must exist.

5.3 Discrete Elastica

Definition 5.3. A discrete arclength parametrized curve $\gamma: T \rightarrow \mathbb{R}^{3}$ with tangent vector $T: I \rightarrow S^{2}$ is called discrete elastica if it is critical for the functional

$$
S=\sum_{i} \log \left(1+\frac{K_{i}^{2}}{4}\right)=\sum_{i} \log \left(1+\left\langle T_{i}, T_{i+1}\right\rangle\right) \simeq \sum_{i} \log \left|T_{i}+T_{i+1}\right|
$$

where $K_{i}=2 \tan \frac{\phi_{i}}{2}$. [\simeq means the functionals are equivalent.] The permissible variations should preserve the endpoints, $\gamma_{0}, \gamma_{n} \in \mathbb{R}^{3}$ and the endedges $T_{0}, T_{n-1} \in S^{2}$.

Theorem 5.4. (Euler-Lagrange equations for discrete elastica) A discrete arclength parametrized curve $\gamma: I \rightarrow \mathbb{R}^{3}$ is a discrete elastica iff there exist vectors $a, b \in \mathbb{R}^{3}$ such that

$$
\frac{T_{k} \times T_{k-1}}{1+\left\langle T_{k}, T_{k-1}\right\rangle}=a \times \gamma_{k}+b
$$

where $T_{k}=\gamma_{k+1}-\gamma_{k}$.
Definition 5.5. The flow $\frac{\partial}{\partial t} \gamma_{k}=a \times \gamma_{k}+b$ on discrete arclength parametrized curves is called the Heisenberg flow.

Lemma 5.6. The Heisenberg flow is the only local flow in the binormal direction that commutes with the tangent flow.

Theorem 5.7. A discrete arclength parametrized curve is a discrete elastica iff the Heisenberg flow preserves its form, ie, under action of this flow, the curve is evolved by a Euclidean motion.

Definition 5.8. A discrete spherical pendulum is a map $T: \mathbb{Z} \rightarrow S^{2}$ with the Lagrangian

$$
\mathcal{L}=\sum_{k} \log \left(1+\left\langle T_{k}, T_{k-1}\right\rangle\right)-\left\langle a, T_{k}\right\rangle
$$

$\log \left(1+\left\langle T_{k}, T_{k-1}\right\rangle\right)$ is the kinetic and $\left\langle a, T_{k}\right\rangle$ potential energy of the pendulum.
Theorem 5.9. A discrete arclength parametrized curve $\gamma: I \rightarrow \mathbb{R}^{3}$ is a discrete elastica iff its tangent vector $T: I \rightarrow S^{2}$ describes the evolution of a discrete spherical pendulum.

