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Introduction
The idea of discretizing concepts of classical differential geometry has been around for some time (Sauer,
1930’s). But its development exploded over the last 15 years since advancements in technology opened
up the possibility to experiment with different theories and elicited interest from industry to further
investigate the potential applications in this field.

The main goal in discrete differential geometry is to formulate discrete equivalents of the geomet-
ric concepts and methods of classical differential geometry while preserving fundamental properties of
the smooth theory. That is to say that one hopes to recover the smooth surface theory in the limit
of refinements of the discretization but does not want to lose essential geometric information in the
discretization.

This lecture series is based on a Discrete Differential Geometry course taught by Professor Dr.
Alexander Bobenko at the Technische Universität at Berlin as part of the Berlin Mathematical School.
These notes have been compiled from the lecture notes from the following courses:

- Professor Dr. Alexander Bobenko, Technische Universität Berlin, Geometry I (BMS Advanced
Course), Wintersemester 2008/2009.

- Professor Dr. Alexander Bobenko, Technische Universität Berlin, Geometry II - Discrete Differen-
tial Geometry (BMS Basic Course), Sommersemester 2009.

- Professor Dr. Konrad Polthier, Freie Universität Berlin, Differential Geometry I (BMS Basic
Course), Sommersemester 2010.

with some additional background information from the following books:

- Alexander Bobenko and Yuri Suris, Discrete differential geometry: Integrable structure.

- Isaac Chavel, Riemannian geometry: A modern introduction, 2nd edition.

- Manfredo do Carmo, Riemannian geometry.

- Timothy Gowers, The Princeton companion to mathematics.

- David Hilbert and S. Cohn-Vossen, Geometry and the imagination.

- John Stillwell, The four pillars of geometry.
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1 Discrete Curves
Differential geometry explores the geometric properties of curves and surfaces by examining each of
its points and their neighborhood. We can approximate the curve or surface in the neighborhood by
comparing them to simple1 curves or surfaces like lines and circles or planes and spheres.

To motivate the terms used to describe discrete curves, we will start by thinking about its smooth
counterpart.

1.1 Smooth curves

Definition 1.1. Let I = [a, b] ⊂ IR be an interval. A parametrized curve is a map2

c : I → IRn

t 7→ c(t) =

c1(t)...
cn(t)

 ∈ IRn.

Definition 1.2. The tangent vector of a curve c is

d

dt
c(t) = ċ(t) =

ċ1(t)...
ċn(t)

 .

We want to study nice curves. We want curves to be differentiable. And we don’t want curves to
have sharp corners.3 Such curves are said to be regular.

Definition 1.3. A curve is called regular if |ċ(t)| > 0.

Regular curves have well-defined tangent lines and do not have sharp corners.

Definition 1.4. Let c : I → IRn be a differentiable parametrized curve. The length of c is given by

L
(
c|[a,b]

)
=

∫ b

a

|ċ(t)| dt

where |ċ(t)| =
√∑

(ċi(t))
2.

Definition 1.5. A curve is said to be arclength parametrized or parametrized by arclegnth if |ċ(t)| = 1
for all t ∈ I.

If c is an arclength parametrized curve, then

L
(
c|[a,b]

)
=

∫ b

a

|ċ(t)| dt =

∫ b

a

1 dt = b− a.

This means that the length of curve is the same as the length of the interval.
1ie, easy
2The term map is used interchangeably with continuous function.
3In particular, we want to avoid situations where cmaps an interval (a 1-manifold) to a space-filling curve (a 2-manifold).

For example, fractals, Sierpiński curve.
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1.2 Discrete curves

Definition 1.6. Let I ⊂ Z be a finite interval. A discrete curve in IRn is a map γ : I → IRn.
Notation: γk := γ(k).

The same words used to talk about smooth curves are used to describe discrete curves. However, we
are not able to use the same definitions since it does not make sense to talk about the differential of a
curve, for example, when the curve contains nothing more than combinatorial data.

Definition 1.7. A discrete curve is called regular if any three of its successive points are different.

Definition 1.8. The length of a discrete curve γ : I → IRn is given by

L(γ) =
∑

k,k+1∈I

|γk+1 − γk| .

Definition 1.9. A discrete curve is called arclength parametrized if |γk+1 − γk| = 1 for all k, k + 1 ∈ I.

Definition 1.10. The tangent vector of γ at k ∈ I is given by4

Tk :=
γk+1 − γk
|γk+1 − γk|

.

2 Tractrix & Darboux Transform

2.1 Smooth

Let γ : I → IR2 be a smooth planar curve. Consider a point that moves along γ and pulls along an
interval [γ, γ̂] so that

• the distance |γ̂(t)− γ(t)| is constant for all t ∈ I, and

• the velocity vector d
dt
γ̂ is parallel to γ̂ − γ.

Such a curve is called a tractrix.

Definition 2.1. A curve γ̂ is called a tractrix of γ if v := γ̂ − γ satisfies:

• |v| = const

• v ‖ γ̂ ′

4If γ is arclength parametrized, then Tk = γk+1 − γk.
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Lemma 2.2. Let γ be an arclength parametrized curve and γ̂ be its tractrix. Then the curve

γ̃ := γ + 2v, where v = γ̂ − γ

is also arclength parametrized and γ̂ is a tractrix of γ̃.

Proof. First, we begin by showing that γ̃ is arclength parametrized, ie, |γ̃′k| = 1 ∀k ∈ I.

|γ̃′|2 = 〈γ′ + 2v′, γ′ + 2v′〉
= 〈γ′, γ′〉+ 4〈γ′, v′〉+ 4〈v′, v′〉
= 1 + 4〈γ′ + v′, v′〉 = 1 + 4〈γ̂′, v′〉

Since γ̂ is a tractrix of γ, we know that v ‖ γ̂′. Also, 〈v, v′〉 = 0. From this we know that 〈γ̂′, v′〉 = 0.
Thus γ̃ is arclength parametrized.

Now, we must show that γ̂ is a tractrix of γ̃. Let w := γ̂ − γ̃. We want to show that (a) |w| =const
and (b) w ‖ γ̂′.

(a) Note that we have

γ̃ = γ + 2v = γ + 2(γ̂ − γ) = 2γ̂ − γ = γ̂ + v

Then,

w = γ̂ − γ̃ = γ̂ − (γ̂ + v) = −v

So, |w| = | − v| = |v| =const.

(b) Using the results from (a) again, we get

v ‖ γ̂′ ⇐⇒ −v ‖ γ̂′ ⇐⇒ w ‖ γ̂′

so, w is parallel to γ̂.

Definition 2.3. Two arclength parametrized curves γ, γ̃ : I → IR2 are called Darboux transforms of
each other if

• |γ(t)− γ̃(t)| = const for all t ∈ I

• γ̃ is not a parallel translation5 of γ.

Theorem 2.4. Let γ : I → IR2 be an arclength parametrized curve. Then the following statements are
equivalent:

1) γ̃ is a Darboux transform of γ.

2) γ̂ := 1
2
(γ + γ̃) is a tractrix of γ (and of γ̃).

5The parallel translation of a curve is literally just translating the curve on the plane. More specifically, let v ∈ S1 be
a unit vector in IR2. Then γ̃(t) = γ(t) + c · v, where c is some constant.
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Figure 1: In this figure, the solid violet line is γ and the dotted green line is γ̃, which are Darboux
transforms of each other. The blue dashed line is γ̂, the tractrix of both γ, γ̃.

Proof. Let v := γ̂ − γ and w := γ̂ − γ̃.
(1→ 2)
For γ̂ to be a tractrix of γ, γ̃, we need to show that

(a) |v| =const, |w| =const; and

(b) v ‖ γ̂′, w ‖ γ̂′

(a) We know that γ̃ is a Darboux transform of γ. So, |γ − γ̃| =const. Then

γ̂ =
1

2
(γ + γ̃)

2γ̂ = γ + γ̃

γ̃ = 2γ̂ − γ

and

const = |γ − γ̃| = |γ − (2γ̂ − γ)| = 2|γ − γ̂|

and thus |γ − γ̂| = | − v| = |v| =const. Similarly, |w| =const.

(b) Since |γ − γ̃| =const, we know that

const = c = |γ − γ̃|
c2 = |γ − γ̃|2

0 =
d

dt
|γ(t)− γ̃(t)|2

=
d

dt
〈γ(t)− γ̃(t), γ(t)− γ̃(t)〉

= 2

〈
d

dt
(γ(t)− γ̃(t)) , γ(t)− γ̃(t)

〉
= 2 〈γ′ − γ̃′, γ − γ̃〉

〈γ′ − γ̃′, γ − γ̃〉 = 〈γ′, γ〉+ 〈γ̃′, γ̃〉 −
(
〈γ′, γ̃〉+ 〈γ̃′, γ〉

)
= 0
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We know that γ, γ̃ are arclength parametrized so

|γ| = 1 ⇒ d

dt
|γ(t)|2 = 0 ⇒ 〈γ′, γ〉 = 0 & 〈γ̃′, γ̃〉 = 0

So we have

0 = 〈γ′, γ̃〉+ 〈γ̃′, γ〉 =
d

dt
〈γ, γ̃〉 ⇒ 〈γ, γ̃〉 = const

(2→ 1) First notice that

γ̂ =
1

2
(γ + γ̃) ⇒ γ̃ = 2γ̂ − γ = 2γ̂ − γ − γ + γ = γ + 2v

where v = γ̂ − γ. We know that γ is arclength parametrized and γ̂ is its tractrix. By Lemma 2.2, we
know that γ̃ is also arclength parametrized. We also know that γ̂ is a tractrix of both γ and γ̃. Let
w = γ̂ − γ̃ as before. Then, v ‖ γ̂′ ‖ w and γ̂ is on both v and w, so γ̂

2.2 Discrete

Definition 2.5. Two discrete arclength parametrized curves γ, γ̃ : I ⊂ Z → IR2 are called Darboux
transforms of each other if their corresponding points are at constant distance, ‖γk − γ̃k‖ = const for
all k and γk, γk+1, γ̃k+1, γ̃k is not a parallelogram. (γk, γk+1, γ̃k+1, γ̃k) is called a Darboux butterfly.

3 Möbius Darboux Transform
Before we proceed, we will need some more terms. Some properties of these terms will also be listed
without proof.

3.1 Möbius Transformation

Definition 3.1. A Möbius transformation or linear fractional transformation is a rational function of
the form

L : C→ C

z 7→ az + b

cz + d
where a, b, c, d ∈ C, ad− bc 6= 0

This L can be identified with the matrix
(
a b
c d

)
∈ GL(2,C).

Note: There exists a bijection between linear fractional transformations and PSL(2,C) = SL(2,C)/{±I}
where SL(2,C) = {A ∈ GL(2,C) | detA = 1}. This identification is a group isomorphism.

Li ↔ [Ai] ∈ PSL(2,C)⇒ L2 ◦ L1 ↔ [A2A1]

Proposition 3.2. Möbius transformations map circles (and straight lines) to circles (and straight lines).
They are compositions of reflections in hyperplanes6 and inversions in hyperspheres.

Proposition 3.3. Möbius transformations are conformal.
6We treat hyperplanes as hyperspheres passing through ∞.
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3.2 Cross Ratio

Definition 3.4. The cross ratio of four points in C is defined by

cr(z1, z2, z3, z4) :=
(z1 − z1)(z3 − z4)

(z2 − z3)(z4 − z1)

Proposition 3.5. Given any three points p, q, r ∈ IRP 1, any other point x ∈ IRP 1 is uniquely determined
by its cross ratio with p, q, r, ie, ∃!x such that cr(p, q, r, x) = y

Proposition 3.6. The cross ratio depends on the order of points.

Proposition 3.7. Four points a, b, c, d ∈ C are concircular (or collinear) iff their cross ratio is real.
cr < 0 if the points are in order and cr > 0 if not in order around the circle.

Proposition 3.8. The cross ratio is invariant with respect to linear fractional transformations.

3.3 Möbius Darboux transform

Definition 3.9. Let γ : I → C be a discrete curve and αi ∈ IR (or C) are associated to the edges
[γi, γi+1]. A curve γ̃ : I → C is called a Möbius Darboux transform of γ with parameter λ ∈ IR (or C) if

cr(γi, γi+1, γ̃i+1, γ̃i) =
αi
λ
.

(γi, γi+1, γ̃i+1, γ̃i) is called a Darboux butterfly.

Theorem 3.10. Given a curve γ : I → C, λ ∈ C, αi : edges → C and a point γ̃0, there exists a unique
Möbius Darboux transform with these data.

Proof. Follows from Property 3.5.

Theorem 3.11. (Closed Darboux Transforms) Let γ : Z→ C be a periodic (ie, closed) discrete curve.
Then for any q ∈ C, there exist one, two, or infinitely many closed Darboux transformations γ̃ : Z→ C.

Proof. When is γ̃ closed? ie (γ̃i+n = γ̃i)?

q =
(γi − γi+1)(γ̃i+1 − γ̃i)
(γi+1 − γ̃i+1)(γ̃i − γi)

γ̃i 7→ γ̃i+1 =Mi(γ̃i)

=
γ̃i(γi+1 − γi) + qγi(γi+1 − γ̃i)
q(γi − γ̃i)− (γi − γi+1)

γ̃n =Mn−1(γ̃n−1)

=Mn−1 ◦Mn−2(γ̃n−2)

=Mn−1 ◦Mn−2 ◦ · · · ◦M0(γ̃0) = γ̃0

Since the composition of Möbius transformations is itself a Möbius transformation, we can set

Mq :=Mn−1 ◦Mn−2 ◦ · · · ◦M0
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which will have the form

Mq(z) =
Az +B

Cz +D
,

where A,B,C,D ∈ C depends on γ and q ∈ Q.
We want to find all γ̃0, the Möbius Darboux transformations of γ, that will also be periodic,Mq(γ̃0) =

γ̃0. Then

Mq(γ̃0) =
Aγ̃0 +B

Cγ̃0 +D
= γ̃0

Aγ̃0 +B = γ̃0(Cγ̃0 +D) = Cγ̃2
0 +Dγ̃0

C γ̃2
0 + (D − A) γ̃0 −B = 0

The solutions to this quadratic equation will give us γ̃0 which in turn will give us the rest of γ̃. Since
the equation is quadratic, we know that there will be one, two, or infinitely many7 solutions.

The set of all periodic Darboux transformations is associated to the algebraic curve C = {(q, γ̃0) ∈
C2 | Mq(γ̃0) = γ̃0}.

The following Corollary 3.13 will be used in the next lecture.

Theorem 3.12. The cross ratio system is 3D-consistent (ie, the three possibly different values of z123

coincide for any choice of z, z1, z2, z3).

z23 z123

z3

����
z13

����

z2 z12

z

����
z1

����

Proof. Let us look at z, z1, z13, z3.

z3
α1

α3

z13

α3

z α1
z1

7The parabola can intersect the x-axis once, twice or it can be the entire x-axis itself, thus having infinite solutions.
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cr(z, z1, z13, z3) =
α1

α3

(z − z1)

(z1 − z13)

(z13 − z3)

(z3 − z)
=
α1

α3

(z13 − z3) =
α1

α3

(z1 − z13)(z3 − z)
(z − z1)

(z13 − z1) + (z1 − z3) = −(z13 − z1)
α1

α3

(z3 − z)
(z − z1)

(z13 − z1) + (z13 − z1)
α1

α3

(z3 − z)
(z − z1)

= −(z1 − z3)

(z13 − z1)

(
1 +

α1

α3

(z3 − z)
(z − z1)

)
= (z3 − z1)

(z13 − z1) =
(z3 − z1)(

1 + α1

α3

(z3−z)
(z−z1)

)
=

(z3 − z) + (z − z1)

1 + α1

α3

1
(z−z1)

(z3 − z)

=
1 · (z3 − z) + (z − z1)
α1

α3

1
z−z1 (z3 − z) + 1

=: L(z1, z, α1, α3)[z3 − z]

where L(z1, z, α1, α3) is a matrix defined by

L(w, v, α, β) =

(
1 v − w

α
β

1
v−w 1

)
, z, w ∈ C, z 6= w, α, β ∈ C∗

whose associated linear fractional transformation is

L(w, v, α, β)[z] =
z + (v − w)
α
β

1
(v−w)

(z) + 1
.

This means that there is a Möbius transformation mapping z3 − z to z13 − z1 and similarly for all
edges on the combinatorial cube.

z3 z13

L //

z z1

Going around the 3D cube, we get

z123 − z12 = L(z12, z1, α2, α3)[z13 − z1]

= L(z12, z1, α2, α3)L(z1, z, α1, α3)[z3 − z]
z123 − z12 = L(z12, z2, α1, α3)L(z2, z, α2, α3)[z3 − z]
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Claim:

cr(z, z1, z12, z2) =
α1

α2

⇐⇒ L(z12, z1, α2, α3)L(z1, z, α1, α3) = L(z12, z2, α1, α3)L(z2, z, α2, α3)

The cross ratio: cr(z, z1, z12, z2) = α1

α2
gives us the following relations:

α1
(z1 − z12)

(z − z1)
= α2

(z2 − z12)

(z − z2)

α2
(z − z1)

(z1 − z12)
= α1

(z − z2)

(z2 − z12)

Then we have:

L(z12, z1, α2, α3)L(z1, z, α1, α3) =

(
1 z1 − z12

α2

α3

1
(z1−z12)

1

)(
1 z − z1

α1

α3

1
(z−z1)

1

)
=

(
1 + α1

α3

(z1−z12)
(z−z1)

z − z12

α2

α3

1
(z1−z12)

+ α1

α3

1
(z−z1)

α2

α3

(z−z1)
(z1−z12)

+ 1

)

=

(
1 + α2

α3

(z2−z12)
(z2−z) z − z12

α1

α3

1
(z2−z12)

+ α2

α3

1
(z−z2)

α1

α3

(z−z2)
(z2−z12)

+ 1

)
= L(z12, z2, α1, α3)L(z2, z, α2, α3)

Conversely, we have

L(z12, z1, α2, α3)L(z1, z, α1, α3) = L(z12, z2, α1, α3)L(z2, z, α2, α3)(
1 + α1

α3

(z1−z12)
(z−z1)

z − z12

α2

α3

1
(z1−z12)

+ α1

α3

1
(z−z1)

α2

α3

(z−z1)
(z1−z12)

+ 1

)
=

(
1 + α2

α3

(z2−z12)
(z−z2)

z − z12

α1

α3

1
(z2−z1)

+ α2

α3

1
(z−z2)

α1

α3

(z−z2)
(z2−z12)

+ 1

)
From position (1,1) we get the equality:

1 +
α1

α3

(z1 − z12)

(z − z1)
= 1 +

α2

α3

(z2 − z12)

(z − z2)

α1
(z1 − z12)

(z − z1)
= α2

(z2 − z12)

(z − z2)

α1

α2

=
(z − z1)

(z1 − z12)

(z2 − z12)

(z − z2)
=

(z − z1)

(z1 − z12)

(z12 − z2)

(z2 − z)
= cr(z, z1, z12, z2)

We get the same conclusion from position (2,2) so the claim is proved.
No matter how we go around the combinatorial cube, we will obtain the same value of z123, thus the

cross-ratio system is 3D consistent.

Corollary 3.13. Given a point z and its three neighbors z1, z2, z3 ∈ C, let zij be the Darboux tranforms
associated to the faces of the 3D combinatorial cube. Then there exists a unique z123 ∈ C so that the
faces

(z1, z12, z123, z13)

(z2, z23, z123, z12)

(z3, z13, z123, z23)

are Darboux butterflies.
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Proof. Choose αi = `2i where ` = |zi − z|. Follows from Theorem 3.12.
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