FQ2016 MAT21C Lecture 25: November 28, 2016

Announcements

e M 11/28 from 3:10-4PM 204 Art
e W 11/30 6:10-8PM 6 Olson
e R 12/1 for 4:10-5PM 6 Wellman

MAT 21C REVIEW
10 Infinite Sequences and Series: 10.1-10.10

Sequences Partial Sums of ... Series ... Power Series ...Taylor’s Series
aop S0 = ao ao f(0)
a1 51 = ap + a aop + a1 f(0) + f(0)x
as S9 = ap+ay+ay ag+ax+ax?  f(0)+ f(0)x + ! 2(10)m2

k=0

an, Sp = En:ak En:akxk E": &fo)xk
k=0 k=0 k!

Important Concepts
o limits
e convergence

e intervals of convergence

12 Vectors and the Geometry of Space: 12.1-12.5

Vectors

e A vector is an ordered set of real numbers: ¥ = (v1,v2) or ¥ = (v1,v2,v3)

e The length or magnitude of ¥ is |¥| = \/v] +v3 or |T| = /v + v3 + 03

o

o If © # 0, the direction of ¥ is the unit vector Kk

[

.« i =5

el

Vector Operations

For vectors 4 = (uy,us,u3) and ¥ = (v1, vy, v3) and constant k
o Addition: 4 + ¥ = (uy + vy, us + vo,uz + v3)
e Scalar Multiplication: k4 = (kuy, kus, kug)
e Dot Product: 4 - ¥ = ujv1 + ugvs + ugvz (< a scalar!)

e Cross Product: 4 x ¥ = (ugvs — ugve, —(u1v3 — uzv1), u1v2 — usvy) (< only in dimension 3!)
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Properties of Vector Operations

o U U =|ul|lU|cosd, where 6 is the acute angle between 4 and ¥
e U-u=|ul|?

e 4 and ¥ are orthogonal when 4 - ¥ =0

v -9\ U U - v
e The vector projection of 4 onto ¥ is projz 4 = (|ﬁ | cos 9)— = ( > — = ( > 0]

. S,
S . . . L. o u-v L, v
e The scalar component of 4 in the direction of ¥ is |4 |cos = ( > =U - —

7]
e U X U =|ul||V|sind 7, where 7 is the unit vector pointing in the normal direction
e |4 X ¥|=|dl||U]|sinb is the area of the parallelogram determined by 4 and ¥

—
— —

e Nonzero vectors 4 and U are parallel when 4 x ¥ = 0
e Nonzero vectors ¥ and ¥ are parallel when @ = kv for some scalar &k # 0.

e U X U=—(9x14d)

Lines and Planes in Space

e A vector equation for the line through Py(z, yo, 20) parallel to ¥ is 7 (t) = Fo + ¢4,
where 7o = (g, Y0, 20) is the position vector of Pp.

e A vector equation for the plane through Py(zo, yo, 20) normal to ¥ = (vy, vy, v3) is
v - Py ?’ =0or
v1(z — x0) +v2(y — yo) +v3(z — 20) =0

1P x |

e The distance from a point S to a line through P parallel to ¥ is d = 7]
]

o

e The distance from a point S to a plane through P with normal ¥ is d = ’ﬁ

S

||
13 Vector-Valued Functions and Motion in Space: 13.1-13.2

Curves in Space
e We can describe a curve in space as a collection of the positions in space traced by a particle’s path.
o If 7(t) = (f(t),g(t), h(t)) is the position vector of a particle moving along a smooth curve in space,

7 U
then ¥ (t) = s is the particle’s velocity vector and @ (t) = 7 when it exists, is the particle’s

acceleration.

Differentiation Rules

e Product Rule: %[ﬁ(t)- B(t)]=u'(t)T(t)+ u(t)d'(t)

e Chain Rule: %[ﬂ(f(t))] = fl(t)a'(f(t))

e When |7 (t)| = ¢ is constant, 7 - #' = 0.
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Initial Value Problem
e A differentiable function is an antiderivative of a vector function # if @ = #. Then the

R(1)
indefinite integral of # (t) is / 7 (t)dt = R(t)+ C, for some constant vector C .

Differential Equation: %F(t) = (f(t),q(t),h(t))

Initial Condition: 7(0) = ¥o = (uy,us, uz)

Problem: Find 7 (¢).

1. Integrate differential equation:
/dt </f dt/ dt/ dt>
F(t) +c1, G(t) + o, H(t) + c3) = (F(2), G(t), H(t) ) + (c1, ¢2, ¢3)
where F'(t) = f(t),G’(t) =g(t),H'(t) = h(t).

2. Use initial condition to solve for C' = (c1,c2,c3):
(ur,uz,us) = 7o = 7(0) = (F(0),G(0), H(0) ) + {c1, c2,c3)

u; = F(0)+ ¢ = 1 =u; — F(0)
Ug = G(O) + c2 = Co = U2 —G(O)
U3:H(0)+03 = 63:U37H(0>

3. Solution: 7 (t) = ( F(t) + u1 — F(0), G(t) + us — G(0), H(t) + us — H(0) )

14 Partial Derivatives: 14.1-14.8

Partial Derivatives
e The partial derivative of f(z,y) with respect to x at the point (zo,yo) is

% = if(mvyo) = }11112) f(on + thOIi - f(xo, yO)

(z0,Y0) T=x0
L4 fxy(-r07y0) = fym($07y0>

- d Of de  9f dy
o Chain Rule: — f(x(t),y(t)) = 5=~ Oy dt

Implicit Differentiation

Suppose f(z,y) =0 and it is difficult to write y as a function of x.

Problem: Find @
dzr

1. Make sure to find f in the form f(x,y) = 0. (Everything has to be on same side of the equal sign.)

2. Compute f,, f,. Make sure f, # 0.

3. Solution: @ —fo
dx fy
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Directional Derivative and Gradient

e The directional derivative of f at Py(xg,yo) in the direction of the unit vector @4 = (uq, us) is

_df — lim fxo + tur, yo + tuz) — f(xo, o)
dt anp 0 t

(Dﬁ f)Po
provided the limit exists.

e The gradient vector of f(z,y) at a point Py(xo,yo) is the vector Vf = <(9f 5f>

dx’ dy
e Dyf=Vf -4
e The function f increases most rapidly in the direction of V f.

e The derivative along a path is %f( 7 () =Vf(F(#)  7'(t)

e If a differentiable function f(z,y) has a constant value ¢ along a smooth curve ¥ = x(t) i+ y(t)j’,
then f(z(t),y(t)) = c. Here ¥ (t) describes a level curve of f. Then Vf is orthogonal to the tangent
vector % 7. The tangent line to a level curve f(z,y) = c at (zo,yo) is

fe(20,y0)(® — 20) + fy(20,%0) (¥ — ¥o) =0

e The tangent plane at the point Py(xg,yo,20) on the level surface f(z,y,z) = ¢ of a differentiable
function f is the plane through Py normal to V f|p,. The tangent plane to a level surface f(z,y,2) = ¢
at Po(zo, Yo, 20) is

fo(Po)(x — x0) + f(Po)(y — yo) + f2(Fo)(z — 20) =0
The normal line of the surface at Py is the line through P, parallel to V f|p,. The normal line to a
level surface f(z,y,2) = ¢ at Py(xo, Yo, 20) is

x =z + f2(Po)t, y =10+ fy(FPo)t, z =20+ f.(Po)t
e The linearization of a function f(z,y) at a point (zo,yo) where f is differentiable is the function
L(z,y) = f(xo,¥0) + fu(20,y0)(x — z0) + fy(0, y0) (¥ — Yo)
Optimization

e Suppose that f(z,y) and its first and second partial derivatives are continuous throughout a disk
centered at (a,b) and that fy(a,b) = fy(a,b) = 0. Then

. [ has a local mazimum at (a,b) if foo <0 and fou fy, — f2, > 0.
. f has a local minimum at (a,b) if fyo >0 and fop fyy — fg?y > 0.

1
2
3. f has a saddle point at (a,b) if frqfyy — ﬁy < 0.
4

. the test is inconclusive at (a,b) if frqfyy — 311 =

determine the behavior of f at (a,b).

0. In this case, we must find some other way to

e The method of Lagrange multipliers

Suppose that f(x,y,z) and g(z,y, z) are differentiable and Vg # 0 when g(z,y, z) = 0.

Problem: Find local min/max values of f subject to the constraint g(z,y, z) = 0 (if they exist).

Solution: Find values of z,y, z and A that simultaneously satisfy the equations

Vf=AVyg and g(z,y,2) =0



FQ2016 MAT21C Lecture 25: November 28, 2016

e Lagrange multipliers with two constraints

Problem: Find extreme value of f(z,y,z) whose variables are subject to two constraints

g1(x,y,2) =0 gao(2,9,2) =0

where g1, go are differentiable with Vg1 not parallel to Vgs.

Solution: Locate points P(x,y, z) where f takes on its constrained extreme values. Find z,y, 2, \, u
that simultaneously satisfy

Vf = )‘Vgl + Mv.g2 91(1'7:%2) =0 and QQ(l',y,Z) =0



