Announcements

- $\bullet\,$ M 11/28 from 3:10-4PM 204 Art
- W 11/30 6:10-8PM 6 Olson
- R 12/1 for 4:10-5PM 6 Wellman

MAT 21C REVIEW

10 Infinite Sequences and Series: 10.1-10.10

Sequences	Partial Sums of	\dots Series	\dots Power Series	Taylor's Series
a_0	$s_0 =$	a_{0}	<i>a</i> o	f(0)
a_1	$s_0 = s_1 $	$a_0^{(0)} + a_1$	$a_0^{(0)} + a_1 x$	f(0) + f'(0)x
a_2	$s_2 =$	$a_0 + a_1 + a_2$	$a_0 + a_1 x + a_2 x^2$	$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2$
:				
a_n	$s_n =$	$\sum_{k=0}^{n} a_k$	$\sum_{k=0}^{n} a_k x^k$	$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}$
:				

Important Concepts

- $\bullet~{\rm limits}$
- convergence
- intervals of convergence

12 Vectors and the Geometry of Space: 12.1-12.5

Vectors

- A vector is an ordered set of real numbers: $\vec{v} = \langle v_1, v_2 \rangle$ or $\vec{v} = \langle v_1, v_2, v_3 \rangle$
- The length or magnitude of \vec{v} is $|\vec{v}| = \sqrt{v_1^2 + v_2^2}$ or $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$
- If $\vec{v} \neq \vec{0}$, the direction of \vec{v} is the unit vector $\frac{\vec{v}}{|\vec{v}|}$.

•
$$ec{v} = |ec{v}| rac{ec{v}}{|ec{v}|}$$

Vector Operations

For vectors $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ and constant k

- Addition: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$
- Scalar Multiplication: $k \vec{u} = \langle ku_1, ku_2, ku_3 \rangle$
- Dot Product: $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ (\Leftarrow a scalar!)
- Cross Product: $\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = \langle u_2 v_3 u_3 v_2, -(u_1 v_3 u_3 v_1), u_1 v_2 u_2 v_1 \rangle$ (\Leftarrow only in dimension 3!)

Properties of Vector Operations

- $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$, where θ is the acute angle between \vec{u} and \vec{v}
- $\vec{u} \cdot \vec{u} = |\vec{u}|^2$
- \vec{u} and \vec{v} are orthogonal when $\vec{u} \cdot \vec{v} = 0$
- The vector projection of \vec{u} onto \vec{v} is $\operatorname{proj}_{\vec{v}} \vec{u} = \left(|\vec{u}| \cos \theta \right) \frac{\vec{v}}{|\vec{v}|} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} \right) \frac{\vec{v}}{|\vec{v}|} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \right) \vec{v}$
- The scalar component of \vec{u} in the direction of \vec{v} is $|\vec{u}|\cos\theta = \left(\frac{\vec{u}\cdot\vec{v}}{|\vec{v}|}\right) = \vec{u}\cdot\frac{\vec{v}}{|\vec{v}|}$
- $\vec{u} \times \vec{v} = |\vec{u}| |\vec{v}| \sin \theta \vec{n}$, where \vec{n} is the unit vector pointing in the normal direction
- $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$ is the area of the parallelogram determined by \vec{u} and \vec{v}
- Nonzero vectors \vec{u} and \vec{v} are parallel when $\vec{u} \times \vec{v} = \vec{0}$
- Nonzero vectors \vec{u} and \vec{v} are parallel when $\vec{u} = k \vec{v}$ for some scalar $k \neq 0$.
- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$

Lines and Planes in Space

- A vector equation for the line through $P_0(x_0, y_0, z_0)$ parallel to \vec{v} is $\vec{r}(t) = \vec{r}_0 + t \vec{v}$, where $\vec{r}_0 = \langle x_0, y_0, z_0 \rangle$ is the position vector of P_0 .
- A vector equation for the plane through $P_0(x_0, y_0, z_0)$ normal to $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is $\vec{v} \cdot \overrightarrow{P_0P} = 0$ or $v_1(x x_0) + v_2(y y_0) + v_3(z z_0) = 0$
- The distance from a point S to a line through P parallel to \vec{v} is $d = \frac{|\vec{PS} \times \vec{v}|}{|\vec{v}|}$
- The distance from a point S to a plane through P with normal \vec{v} is $d = \left| \overrightarrow{PS} \cdot \frac{\vec{v}}{|\vec{v}|} \right|$

13 Vector-Valued Functions and Motion in Space: 13.1-13.2

Curves in Space

- We can describe a curve in space as a collection of the positions in space traced by a particle's path.
- If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is the position vector of a particle moving along a smooth curve in space, then $\vec{v}(t) = \frac{d\vec{r}}{dt}$ is the particle's velocity vector and $\vec{a}(t) = \frac{d\vec{v}}{dt}$, when it exists, is the particle's acceleration.

Differentiation Rules

- Product Rule: $\frac{d}{dt} [\vec{\boldsymbol{u}}(t) \cdot \vec{\boldsymbol{v}}(t)] = \vec{\boldsymbol{u}}'(t) \vec{\boldsymbol{v}}(t) + \vec{\boldsymbol{u}}(t) \vec{\boldsymbol{v}}'(t)$
- Chain Rule: $\frac{d}{dt}[\vec{u}(f(t))] = f'(t)\vec{u}'(f(t))$
- When $|\vec{r}(t)| = c$ is constant, $\vec{r} \cdot \vec{r}' = 0$.

Initial Value Problem

• A differentiable function $\vec{R}(t)$ is an antiderivative of a vector function \vec{r} if $\frac{d\vec{R}}{dt} = \vec{r}$. Then the indefinite integral of $\vec{r}(t)$ is $\int \vec{r}(t) dt = \vec{R}(t) + \vec{C}$, for some constant vector \vec{C} .

Differential Equation: $\frac{d}{dt} \vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ Initial Condition:

 $\vec{\boldsymbol{r}}(0) = \vec{\boldsymbol{r}}_0 = \langle u_1, u_2, u_3 \rangle$

Problem: Find $\vec{r}(t)$.

1. Integrate differential equation:

$$\vec{r}(t) = \int \frac{d}{dt} \vec{r}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle$$
$$= \left\langle F(t) + c_1, G(t) + c_2, H(t) + c_3 \right\rangle = \left\langle F(t), G(t), H(t) \right\rangle + \left\langle c_1, c_2, c_3 \right\rangle$$
$$t) = f(t) C'(t) = g(t) H'(t) = h(t)$$

where F'(t) = f(t), G'(t) = g(t), H'(t) = h(t).

2. Use initial condition to solve for $\vec{C} = \langle c_1, c_2, c_3 \rangle$:

$$\langle u_1, u_2, u_3 \rangle = \vec{r}_0 = \vec{r}_0 = \langle F(0), G(0), H(0) \rangle + \langle c_1, c_2, c_3 \rangle u_1 = F(0) + c_1 \implies c_1 = u_1 - F(0) u_2 = G(0) + c_2 \implies c_2 = u_2 - G(0) u_3 = H(0) + c_3 \implies c_3 = u_3 - H(0)$$

3. Solution: $\vec{r}(t) = \langle F(t) + u_1 - F(0), G(t) + u_2 - G(0), H(t) + u_3 - H(0) \rangle$

Partial Derivatives: 14.1-14.8 14

Partial Derivatives

• The partial derivative of f(x, y) with respect to x at the point (x_0, y_0) is

$$\frac{\partial f}{\partial x}\Big|_{(x_0,y_0)} = \left. \frac{d}{dx} f(x,y_0) \right|_{x=x_0} = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h}$$

- $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$
- Chain Rule: $\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$

Implicit Differentiation

Suppose f(x, y) = 0 and it is difficult to write y as a function of x.

Problem: Find $\frac{dy}{dx}$.

- 1. Make sure to find f in the form f(x, y) = 0. (Everything has to be on same side of the equal sign.)
- 2. Compute f_x, f_y . Make sure $f_y \neq 0$.

3. Solution:
$$\frac{dy}{dx} = \frac{-f_x}{f_y}$$

Directional Derivative and Gradient

• The directional derivative of f at $P_0(x_0, y_0)$ in the direction of the unit vector $\vec{u} = \langle u_1, u_2 \rangle$ is

$$(D_{\vec{u}}f)_{P_0} = \left. \frac{df}{dt} \right|_{\vec{u},P_0} = \lim_{t \to 0} \frac{f(x_0 + tu_1, y_0 + tu_2) - f(x_0, y_0)}{t}$$

provided the limit exists.

- The gradient vector of f(x, y) at a point $P_0(x_0, y_0)$ is the vector $\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$
- $D_{\vec{u}}f = \nabla f \cdot \vec{u}$
- The function f increases most rapidly in the direction of ∇f .
- The derivative along a path is $\frac{d}{dt}f(\vec{r}(t)) = \nabla f(\vec{r}(t)) \cdot \vec{r}'(t)$
- If a differentiable function f(x, y) has a constant value c along a smooth curve $\vec{r} = x(t)\vec{i} + y(t)\vec{j}$, then f(x(t), y(t)) = c. Here $\vec{r}(t)$ describes a level curve of f. Then ∇f is orthogonal to the tangent vector $\frac{d}{dt}\vec{r}$. The tangent line to a level curve f(x, y) = c at (x_0, y_0) is

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0$$

• The tangent plane at the point $P_0(x_0, y_0, z_0)$ on the level surface f(x, y, z) = c of a differentiable function f is the plane through P_0 normal to $\nabla f|_{P_0}$. The tangent plane to a level surface f(x, y, z) = c at $P_0(x_0, y_0, z_0)$ is

$$f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0) = 0$$

The normal line of the surface at P_0 is the line through P_0 parallel to $\nabla f|_{P_0}$. The normal line to a level surface f(x, y, z) = c at $P_0(x_0, y_0, z_0)$ is

$$x = x_0 + f_x(P_0)t,$$
 $y = y_0 + f_y(P_0)t,$ $z = z_0 + f_z(P_0)t$

• The linearization of a function f(x, y) at a point (x_0, y_0) where f is differentiable is the function

 $L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Optimization

- Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then
 - 1. f has a local maximum at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$.
 - 2. f has a local minimum at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$.
 - 3. f has a saddle point at (a,b) if $f_{xx}f_{yy} f_{xy}^2 < 0$.
 - 4. the test is inconclusive at (a, b) if $f_{xx}f_{yy} f_{xy}^2 = 0$. In this case, we must find some other way to determine the behavior of f at (a, b).
- The method of Lagrange multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq 0$ when g(x, y, z) = 0.

Problem: Find local min/max values of f subject to the constraint g(x, y, z) = 0 (if they exist).

Solution: Find values of x, y, z and λ that simultaneously satisfy the equations

 $\nabla f = \lambda \nabla g \qquad \text{and} \qquad g(x,y,z) = 0$

• Lagrange multipliers with two constraints

Problem: Find extreme value of f(x, y, z) whose variables are subject to two constraints

 $g_1(x, y, z) = 0$ $g_2(x, y, z) = 0$

where g_1, g_2 are differentiable with ∇g_1 not parallel to ∇g_2 .

Solution: Locate points P(x, y, z) where f takes on its constrained extreme values. Find x, y, z, λ, μ that simultaneously satisfy

 $\nabla f = \lambda \nabla g_1 + \mu \nabla g_2 \qquad g_1(x,y,z) = 0 \qquad \text{and} \qquad g_2(x,y,z) = 0$