
FQ2016 MAT21C Lecture 25: November 28, 2016

Announcements

• M 11/28 from 3:10-4PM 204 Art

• W 11/30 6:10-8PM 6 Olson

• R 12/1 for 4:10-5PM 6 Wellman

MAT 21C REVIEW

10 Infinite Sequences and Series: 10.1-10.10

Sequences Partial Sums of . . . Series . . . Power Series . . . Taylor’s Series

a0 s0 = a0 a0 f(0)
a1 s1 = a0 + a1 a0 + a1x f(0) + f ′(0)x

a2 s2 = a0 + a1 + a2 a0 + a1x+ a2x
2 f(0) + f ′(0)x+ f ′′(0)

2! x2

...

an sn =

n∑
k=0

ak

n∑
k=0

akx
k

n∑
k=0

f (k)(0)

k!
xk

...

Important Concepts

• limits

• convergence

• intervals of convergence

12 Vectors and the Geometry of Space: 12.1-12.5

Vectors

• A vector is an ordered set of real numbers: ~v = 〈v1, v2〉 or ~v = 〈v1, v2, v3〉

• The length or magnitude of ~v is |~v | =
√
v21 + v22 or |~v | =

√
v21 + v22 + v23

• If ~v 6= ~0 , the direction of ~v is the unit vector ~v
|~v | .

• ~v = |~v |
~v

|~v |

Vector Operations

For vectors ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉 and constant k

• Addition: ~u + ~v = 〈u1 + v1, u2 + v2, u3 + v3〉

• Scalar Multiplication: k ~u = 〈ku1, ku2, ku3〉

• Dot Product: ~u · ~v = u1v1 + u2v2 + u3v3 (⇐ a scalar!)

• Cross Product: ~u × ~v = 〈u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1〉 (⇐ only in dimension 3!)
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Properties of Vector Operations

• ~u · ~v = | ~u ||~v | cos θ, where θ is the acute angle between ~u and ~v

• ~u · ~u = | ~u |2

• ~u and ~v are orthogonal when ~u · ~v = 0

• The vector projection of ~u onto ~v is proj~v ~u =
(
| ~u | cos θ

) ~v
|~v |

=

(
~u · ~v
|~v |

)
~v

|~v |
=

(
~u · ~v
|~v |2

)
~v

• The scalar component of ~u in the direction of ~v is | ~u | cos θ =

(
~u · ~v
|~v |

)
= ~u ·

~v

|~v |

• ~u × ~v = | ~u ||~v | sin θ ~n , where ~n is the unit vector pointing in the normal direction

• | ~u × ~v | = | ~u ||~v | sin θ is the area of the parallelogram determined by ~u and ~v

• Nonzero vectors ~u and ~v are parallel when ~u × ~v = ~0

• Nonzero vectors ~u and ~v are parallel when ~u = k ~v for some scalar k 6= 0.

• ~u × ~v = −(~v × ~u )

Lines and Planes in Space

• A vector equation for the line through P0(x0, y0, z0) parallel to ~v is ~r (t) = ~r 0 + t ~v ,
where ~r 0 = 〈x0, y0, z0〉 is the position vector of P0.

• A vector equation for the plane through P0(x0, y0, z0) normal to ~v = 〈v1, v2, v3〉 is

~v ·
−−→
P0P = 0 or

v1(x− x0) + v2(y − y0) + v3(z − z0) = 0

• The distance from a point S to a line through P parallel to ~v is d =
|
−→
PS × ~v |
|~v |

• The distance from a point S to a plane through P with normal ~v is d =

∣∣∣∣−→PS · ~v|~v |
∣∣∣∣

13 Vector-Valued Functions and Motion in Space: 13.1-13.2

Curves in Space

• We can describe a curve in space as a collection of the positions in space traced by a particle’s path.

• If ~r (t) = 〈f(t), g(t), h(t)〉 is the position vector of a particle moving along a smooth curve in space,

then ~v (t) =
d~r

dt
is the particle’s velocity vector and ~a (t) =

d~v

dt
, when it exists, is the particle’s

acceleration.

Differentiation Rules

• Product Rule:
d

dt
[ ~u (t) · ~v (t)] = ~u ′(t)~v (t) + ~u (t)~v ′(t)

• Chain Rule:
d

dt
[ ~u (f(t))] = f ′(t) ~u ′(f(t))

• When |~r (t)| = c is constant, ~r · ~r ′ = 0.
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Initial Value Problem

• A differentiable function ~R (t) is an antiderivative of a vector function ~r if d ~R
dt = ~r . Then the

indefinite integral of ~r (t) is

∫
~r (t) dt = ~R (t) + ~C , for some constant vector ~C .

Differential Equation:
d

dt
~r (t) = 〈 f(t), g(t), h(t) 〉

Initial Condition: ~r (0) = ~r 0 = 〈u1, u2, u3 〉

Problem: Find ~r (t).

1. Integrate differential equation:

~r (t) =

∫
d

dt
~r (t) dt =

〈∫
f(t) dt,

∫
g(t) dt,

∫
h(t) dt

〉
= 〈F (t) + c1, G(t) + c2, H(t) + c3 〉 = 〈F (t), G(t), H(t) 〉+ 〈c1, c2, c3〉

where F ′(t) = f(t), G′(t) = g(t), H ′(t) = h(t).

2. Use initial condition to solve for ~C = 〈c1, c2, c3〉:

〈u1, u2, u3 〉 = ~r 0 = ~r (0) = 〈F (0), G(0), H(0) 〉+ 〈c1, c2, c3〉
u1 = F (0) + c1 ⇒ c1 = u1 − F (0)

u2 = G(0) + c2 ⇒ c2 = u2 −G(0)

u3 = H(0) + c3 ⇒ c3 = u3 −H(0)

3. Solution: ~r (t) =
〈
F (t) + u1 − F (0), G(t) + u2 −G(0), H(t) + u3 −H(0)

〉
14 Partial Derivatives: 14.1-14.8

Partial Derivatives

• The partial derivative of f(x, y) with respect to x at the point (x0, y0) is

∂f

∂x

∣∣∣∣
(x0,y0)

=
d

dx
f(x, y0)

∣∣∣∣
x=x0

= lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

• fxy(x0, y0) = fyx(x0, y0)

• Chain Rule:
d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Implicit Differentiation

Suppose f(x, y) = 0 and it is difficult to write y as a function of x.

Problem: Find
dy

dx
.

1. Make sure to find f in the form f(x, y) = 0. (Everything has to be on same side of the equal sign.)

2. Compute fx, fy. Make sure fy 6= 0.

3. Solution:
dy

dx
=
−fx
fy
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Directional Derivative and Gradient

• The directional derivative of f at P0(x0, y0) in the direction of the unit vector ~u = 〈u1, u2〉 is

(D ~u f)P0
=
df

dt

∣∣∣∣
~u ,P0

= lim
t→0

f(x0 + tu1, y0 + tu2)− f(x0, y0)

t

provided the limit exists.

• The gradient vector of f(x, y) at a point P0(x0, y0) is the vector ∇f =

〈
∂f

∂x
,
∂f

∂y

〉
• D ~u f = ∇f · ~u

• The function f increases most rapidly in the direction of ∇f .

• The derivative along a path is
d

dt
f(~r (t)) = ∇f(~r (t)) · ~r ′(t)

• If a differentiable function f(x, y) has a constant value c along a smooth curve ~r = x(t)~i + y(t)~j ,
then f(x(t), y(t)) = c. Here ~r (t) describes a level curve of f . Then ∇f is orthogonal to the tangent
vector d

dt
~r . The tangent line to a level curve f(x, y) = c at (x0, y0) is

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) = 0

• The tangent plane at the point P0(x0, y0, z0) on the level surface f(x, y, z) = c of a differentiable
function f is the plane through P0 normal to ∇f |P0

. The tangent plane to a level surface f(x, y, z) = c
at P0(x0, y0, z0) is

fx(P0)(x− x0) + fy(P0)(y − y0) + fz(P0)(z − z0) = 0

The normal line of the surface at P0 is the line through P0 parallel to ∇f |P0 . The normal line to a
level surface f(x, y, z) = c at P0(x0, y0, z0) is

x = x0 + fx(P0)t, y = y0 + fy(P0)t, z = z0 + fz(P0)t

• The linearization of a function f(x, y) at a point (x0, y0) where f is differentiable is the function

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Optimization

• Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk
centered at (a, b) and that fx(a, b) = fy(a, b) = 0. Then

1. f has a local maximum at (a, b) if fxx < 0 and fxxfyy − f2xy > 0.

2. f has a local minimum at (a, b) if fxx > 0 and fxxfyy − f2xy > 0.

3. f has a saddle point at (a, b) if fxxfyy − f2xy < 0.

4. the test is inconclusive at (a, b) if fxxfyy − f2xy = 0. In this case, we must find some other way to
determine the behavior of f at (a, b).

• The method of Lagrange multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and ∇g 6= 0 when g(x, y, z) = 0.

Problem: Find local min/max values of f subject to the constraint g(x, y, z) = 0 (if they exist).

Solution: Find values of x, y, z and λ that simultaneously satisfy the equations

∇f = λ∇g and g(x, y, z) = 0
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• Lagrange multipliers with two constraints

Problem: Find extreme value of f(x, y, z) whose variables are subject to two constraints

g1(x, y, z) = 0 g2(x, y, z) = 0

where g1, g2 are differentiable with ∇g1 not parallel to ∇g2.

Solution: Locate points P (x, y, z) where f takes on its constrained extreme values. Find x, y, z, λ, µ
that simultaneously satisfy

∇f = λ∇g1 + µ∇g2 g1(x, y, z) = 0 and g2(x, y, z) = 0
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